Code: 19CS3404, 19IT3404
II B.Tech - II Semester - Regular Examinations - AUGUST 2021

DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to CSE, IT)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Define the term Algorithm.
b) Find out any two drawbacks of Binary Search algorithm.
c) Define Minimum cost spanning tree.
d) Define Dynamic Programming strategy.
e) Define E-node.

PART - B

UNIT - I

2.

a) Discuss various Asymptotic notations used for best 6 M case, average case and worst case analysis of algorithms.
b) Find the Time complexity of Iterative sum algorithm? 6 M OR
3. a) Demonstrate Brute Force Technique with an example.
b) Explain various types of Asymptotic notations with 6 M examples.

UNIT - II

4. a) Explain Quick sort algorithm and simulate it for the 6 M following data:
$20,35,10,16,54,21,25$
b) Illustrate Merge sort algorithm and discuss Time 6 M complexity in both worst case and average case.

OR
5. a) Solve Recurrence relation for Strassen's Matrix 6 M multiplication problem.
b) Solve the following Recurrence relation 6 M $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$, and $\mathrm{T}(1)=2$

UNIT-III

6. a) Discuss Huffman Tree with suitable example.
b) Construct Minimum cost spanning tree using Prim's 6 M algorithm.

OR

Page 2 of 4
7. a) Explain Single source shortest path problem with 6 M example using Greedy method.
b) Calculate the Optimal solution for Job sequencing with 6 M deadlines using Greedy method. $\mathrm{N}=4$, Profits $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(100,10,15,27)$, Deadlines $(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4)=(2,1,2,1)$.

UNIT - IV

8. a) Explain 0/1 Knapsack problem with example.
b) Calculate shortest distances using All pairs shortest 6 M path algorithm.

OR
9. a) Find the shortest tour of Traveling sales person for the 6 M following cost matrix using Dynamic Programming.
$\left[\begin{array}{cccc}\infty & 12 & 5 & 7 \\ 11 & \infty & 13 & 6 \\ 4 & 9 & \infty & 18 \\ 10 & 3 & 2 & \infty\end{array}\right]$
b) Explain Principle of optimality in Dynamic 6 M Programming with suitable example.
10. a) Write an algorithm $\frac{\text { UNIT }-\mathbf{V}}{\text { for } \mathrm{N} \text {-Queens problem using }}$
Backtracking.
b)
bllustrate NP-Completeness with suitable example.
OR
11. a) Use Backtracking technique, solve the following 6 M instance for the Subset sum problem, $s=(6,5,3,7)$ and $\mathrm{d}=15$.
b) Discuss about Assignment problem with suitable 6 M example.

